27 research outputs found

    Webpage Classification with ACO-enhanced Fuzzy-Rough Feature Selection.

    Get PDF
    Abstract. Due to the explosive growth of electronically stored information, automatic methods must be developed to aid users in maintaining and using this abundance of information effectively. In particular, the sheer volume of redundancy present must be dealt with, leaving only the information-rich data to be processed. This paper presents an approach, based on an integrated use of fuzzy-rough sets and Ant Colony Optimization (ACO), to greatly reduce this data redundancy. The work is applied to the problem of webpage categorization, considerably reducing dimensionality with minimal loss of information.

    Performing Feature Selection with ACO

    Get PDF
    Summary. The main aim of feature selection is to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. In real world problems FS is a must due to the abundance of noisy, irrelevant or misleading features. However, current methods are inadequate at finding optimal reductions. This chapter presents a feature selection mechanism based on Ant Colony Optimization in an attempt to combat this. The method is then applied to the problem of finding optimal feature subsets in the fuzzy-rough data reduction process. The present work is applied to two very different challenging tasks, namely web classification and complex systems monitoring.

    Rough Set-Based Dimensionality Reduction for Supervised and Unsupervised Learning

    No full text
    The curse of dimensionality is a damning factor for numerous potentially powerful machine learning techniques. Widely approved and otherwise elegant methodologies used for a number of different tasks ranging from classification to function approximation exhibit relatively high computational complexity with respect to dimensionality. This limits severely the applicability of such techniques to real world problems. Rough set theory is a formal methodology that can be employed to reduce the dimensionality of datasets as a preprocessing step to training a learning system on the data. This paper investigates the utility of the Rough Set Attribute Reduction (RSAR) technique to both supervised and unsupervised learning in an effort to probe RSAR's generality. FuREAP, a Fuzzy-Rough Estimator of Algae Populations, which is an existing integration of RSAR and a fuzzy Rule Induction Algorithm (RIA), is used as an example of a supervised learning system with dimensionality reduction capabilities. A similar framework integrating the Multivariate Adaptive Regression Splines (MARS) approach and RSAR is taken to represent unsupervised learning systems. The paper describes the three techniques in question, discusses how RSAR can be employed with a supervised or an unsupervised system, and uses experimental results to draw conclusions on the relative success of the two integration efforts

    IQuickReduct: An Improvement to Quick Reduct Algorithm

    No full text

    Rough set feature selection algorithms for textual case-based classification

    No full text
    Abstract. Feature selection algorithms can reduce the high dimensionality of textual cases and increase case-based task performance. However, conventional algorithms (e.g., information gain) are computationally expensive. We previously showed that, on one dataset, a rough set feature selection algorithm can reduce computational complexity without sacrificing task performance. Here we test the generality of our findings on additional feature selection algorithms, add one data set, and improve our empirical methodology. We observed that features of textual cases vary in their contribution to task performance based on their part-of-speech, and adapted the algorithms to include a part-of-speech bias as background knowledge. Our evaluation shows that injecting this bias significantly increases task performance for rough set algorithms, and that one of these attained significantly higher classification accuracies than information gain. We also confirmed that, under some conditions, randomized training partitions can dramatically reduce training times for rough set algorithms without compromising task performance.
    corecore